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A CRITICAL EXAMINATION OF A NUMERICAL FRACTURE DYNAMIC CODE
by

L. Hodulak , A.S. Kobayashi and A.F. Emery

ABSTRACT

After upgrading the energy dissipation algori thm, numerical experi-

ments were conducted to assess the rel iability of the explicit dynamic

finite element code, HCRACK. Two dynamic fracture specimens , i.e., the

wedge-loaded rectangular DCB (RDCB) specimen and the wedge-loaded tapered

DCB (TDCB) spec imen, which were studied experimentally by Kalthoff et al ,

were then analyzed wi th this updated fracture dynamic code. Using the

experimentally determined dynamic fracture toughness, KID, versus crack

velocity , ~~, relation , the RDCB specimen was analyzed first by the “propa-

gation method ” where good agreements between calculated and measured KID
versus a relations were observed. The calculated a versus time, t,

relation was then used as input data in the “generation method” where the

resul tant K10 were virtually identical to those obtained in the propaga-

tion method. Error analyses of the generation method were also made first

by using the experimentally determined a versus t relation and secondly by

artificially perturbing this relation.

A TDCB specimen was then analyzed with both the propagation and gen-

eration methods by using the KID versus ~ relation established for this

specimen and the measured a versus t relation , respectively. The

computed KID obtained by both methods were in good agreement with the

experimental results, showing that either approach can be used In analyzing

fracture.

KEYWORDS

Dynamic fracture, dynamic finite element analysis, dynamic fracture

toughness, crack arrest stress Intensity factor.
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INTRODUCTION

For the past three years, two of the authors have used a two-dimension-

al elasto-dynamic finite element code, which was based on HONDO [1], to

compute the dynamic stress intensity factor for a crack propagating with

a prescribed velocity [2—5] by applying to each node a nodal force

sufficient to release the node. This numerical procedure was later modi-

fied to include a startup procedure for computing dynamic stress intensity

factor , dynamic energy release rate, fracture energy, kinetic energy and

strain energy at each increment of crack advance [6,7]. Al so the impulse

stress waves generated by the instantaneous application of a nodal force

to model the release of a crack-tip node was reduced by varying the force

over the time necessary for the crack tip to advance one nodal distance.

Physically, this procedure models a more gradual transit of the crack-tip

between two adjacent finite element nodes and is similar to that developed

by Keegstra (8-10) with the exception that our restraining nodal force is

completely eliminated when the crack-tip reaches its adjacent node. Other

nodal force release mechanisms Include those of Malluck and King EU] and
Rydholm, Fredriksson and Nilsson [12) with different postulated rates of

nodal force release. The dissi pated energy during a crack extension based

on any of the above three nodal force release mechanism is then computed

from the nodal force versus nodal displacement relation during this incre-

mental crack extension. In general this nodal force versus nodal displace-

ment relation is non-linear and Is goverened by the dynamic state surround-

Ing the propagating crack tip thus requiring the monitoring of nodal force

or nodal displacement or both at every Incremental time in the dynamic

finite element analysis. Interestingly enough, recent studies showed that

the differences in the mechanism of nodal force release [13,14] caused

little changes In the resultant dynamic stress Intensity factor. It Is

-— -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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thus of no surprise that good to excellent agreements were claimed by all

[6,11,12) when these three crack tip energy dissipation procedures for

computing the dynamic stress Intensity factor was checked by analyzing

the Broberg problem [15].

The above procedure of computing dynamic stress intensity factor for

a crack whose velocity is prescribed to be equal to measured one in a dy-

namically fracturing specimen was termed “generation calculation ” by

Kanninen [16,17] who also expressed reservations on the accuracy of this

numerical approach. The “propagation calculation ” in contrast to the

“generation calcula tion” is based on an assumed dynamic fracture toughness,

KID, versus crack veloci ty, ~~, relation which is then used to propagate

a crack [16_23].* The assumed KID versus ~ relation i s cons idered correct

when the calculated crack propagation history coincides wi th the experi-

mental data , and the K10 at crack arrest , if any, i s cons idered to be the

crack arres t toughness , Kja~ sought by some in predicting fracture arrest

of a dynami cally propagating crack.

While one can debate the merits of propagation versus generation cal-

cula tions , only one study which involved both propagation and generation

calcu lation using the same numerical algorithm [23] has been published to—

date. Since the limi ted study In Reference [23] did not provide a compre-

hensive error assessment of the two procedures, thi s paper will report

on our comparative studies using two Araldite B fracture specimens which

were analyzed by Kaithoff et a1 by the method of caustics [24,25).

* Note that Keegstra In References [8,9,10] used the propagation calcu-
lation to compute KID versus a relations In fracturing specimens.

_ _ _ _  --
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DYNAMIC FINITE ELEMENT ANALY SIS

In the previous studies cited above [6,26], the dynamic fracture dy-

namic code HCRACK was shown to be an efficient and inexpensive method for

simulating dynamic fracture problems. Numerical experiments proved that

reasonable numerical accuracy can be obtained by using coarse meshes of

conventional elements (see Figures 1 and 2) and a moderate number of time

steps, e.g., about 150 steps for crack propagation and subsequent arrest

in a RDCB specimen shown in Figure 1. Unlike the implicit dynamic finite

element codes used by others, however, it was difficult to accurately pre-

scribe the rate of nodal force release since the input nodal force would

not generally be in equilibri um with the dynamic state of stress in the

adjoining finite elements in this explicit finite element code. As a re-

sult, an in-depth study on the performance of our fracture dynamic code

was conducted for different crack tip force release rates, different cal-

culation procedures for the dynamic stress Intensity factor, and different

finite element breakdown. A brief descr ipti on of some of these findings

are presented in the following.

As mentioned above, the algorithm for artificially prescribing an in-

put nodal force at the crack tip for each time step for prescribed decrease

in the resultant residual nodal force in the dynamic code is not straight-

forward and often a complete release of the nodal force cannot be achieved

In the prescribed time period. The basis of the numerical method is to

define the force, F~
1 which must be applied to a node at time step n such

that the time variation of the stress follows the form shown on figure 3.
L
f In an implicit code, appl ication of Fn would result in the same calculated

force at the end of the time step. With the explicit code, however, the

calculated force at the end of the Increment, Fn°i will rarely be equal to

F~
1. Accordingly, the force at the next time step Fn~.i must be adjusted
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not only to compensate for the error, but also to yield the desired value

at the end of the time step. The simplified method used in [26] was re-

placed by the following equation and typical results are as shown in

figure 3.

n F ’
F - F o F prescribed (1)n+l — n — n+l - 

~~~~~~

At the beginning of the crack propagation history when the first crack

tip node is relased (see Figure 3), excellent agreement between the pre-

scribed (linear decrease In this case) and actually achieved nodal forces

is noted while for the sixth node which was released later (see Figure 3),

some deviations between both nodal forces are noted. Initial static

equilibrium prior to crack propagation most likely contribute the excellent

resul ts In the former case.

Also noteworthy is the recent study by Malluck and King [13] who

compared energy release rates for the two distinctly different functions

of F/ F0 = [l-b/~]
3”2 and F/F0 = [l~b/~]

V2, where b is the distance between

hypothetical crack tip location and the released crack tip node and ~ is

the inter-nodal distance and F and F0 are the instantaneous and original

crack tip nodal forces , respectively. Their results showed no signifi cant

differences In the calculated dynamic stress intensity factors for crack

speeds lower than 25 percent of the shear wave velocity, I.e. c < .25 C2.

Our use of a linearly decreasing nodal force, F/F0 
= [1-b/A], with constant

crack velocity between the two adjoining finite element nodes is thus

j ustified.

The dynamic stress intensity factor was computed directly by the

total strain energy released from an instantaneous balance of the total
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= 2(E~ - En_i ) / (a~~1 - a~) (2)

where ~~ En+i are the total strain energies for crack lengths of ~~
a
~÷1. respectively when the crack extended from node n to node n+l . The

dynamic stress intensity factor, K1, was then computed from G1 using

Freund ’s relation [24]. Alte~’nativeIy the value of was computed by

energy dissipated at the released node as

= (u1 A F1 + E  (u1 - u1 1 ) A F1 ) / (a~~1 - a~) (3)

where m is the number of time steps between nodes n and n+l , u1 and A F1
are displacement and decrease of force at the released node n , respectively. - -,

Figure 4, shows the dynamic fracture toughness, K10, associated with

crack propagation and arrest in one of Kaithoff’s RDCB specimens [24] com-

puted by both equations (2) and (3) using the “propagation method.”

Al though details of this analysis are described in the following section ,

the results are shown in this section as an indication that little di ffer-

ence can be noted In the KID obtained by the two algorithms.
As shown in Figure 4, the forced linear decrease In the crack tip

nodal force improved the simulation of the smoothly propagating crack and

eliminated the spurious oscillations in dynamic stress intensity factor

observed previously [2-5). It is uncertain , however, to what extent this

smoothing procedure may hide the true oscillations of the dynamic stress

intensity factor eventually induced by the reflected stress waves whIch

emanated from the running crack.

SPECIMENS AND MATERIAL DATA

The two specimens analyzed by the dynamic finite element code are

the weige-loaded, RDCB and TDCB specimens which were investigated experi-

mentally by Kalthoff et al (24,25]. SpecImen geometries of these

T _______  _ _ _ _  - L
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Arald ite B specimens and their finite element idealizations can be seen

in Figures 1 and 2.

Although the ri gid loading wedge between the two loading pins will

prevent any inward displacement of the loading pins , these pins are free

to leave the wedge and travel outwards. The resultant dynamic stress in-

tensity factors in the presence of separating pins could vary signifi cant-

ly during crack propagation [26]. The smaller mass density and the two

orders of magnitude larger compliance of the Araldite B specimens in

comparison to the steel specimen studied in Reference [26) should have

reduced the additional input energy due to any possible separation of the

loading pins and thus constant loading pin displacement were prescribed

at the pin holes.

Material constants of Araldite B used for this dynamic finite element

analysis after [24] are modulus of elasticity E 3.38 GPa~ 
Poisson ratio

of v = 0.33 and mass density , p = 1047 kg/rn 3. The exper imentally determined

dynamic fracture toughness K10, versus crac k veloc ity, ~~, relations used

in the propagation calculations of RDCB and TDCB specimens are both plotted

in Figure 5 [24,25] respectively. Crack length as a function of time used

in the “generat ion calcula tions ” of the RDCB spec imen was taken from Figure

5 in Reference [24) but is not reproduced in this paper.

• For the dynamic crack initiation in the RDCB specimen , the dynamic

crack initiation stress intensity factor, K1Q1 as reported in Reference

(24], was used and the subsequent dynamic stress intensity factors were

• computed from the energy released at the node adjacent to the reference

crack tip node except the set of K10 data noted in Figure 4. Since an

experimentally determined K1Q was not reported in Reference [25], a
statistically computed K1~ which was back calculated from the median of

* . ___
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Kalthoff ’s measured oscillating KID values [25] after crack arrest, was

used in the analysis of the TDCB specimen.

RESULTS

RDCB Spec imen

The first numerical analysis involved a propagation calculation for

the RDCB specimen of Figure 1 using the KID versus ~ relation of Figure 5

and a K1Q = 2.32 MNm3”2 . The resulting dynamic fracture toughness and

crack tip motion of this propagation calculation are shown in Figures 6

and 7, respectively. The “propagation” crack tip motion from Figure 7 was

then used as input data for the “generation” calculation . Thi s resul t i s
not plotted in Figure 6 since the KID versus ~ relations obtained by both
the propagati w~ and generation calculat ion were indistinguishable.

As an additional numerical experimentation , however , the measured

crack length , a, versus time, t, relation of Reference [24] was used as

input to the “generat ion” calcula tion and the resultant K10 are also shown

In Figures 6 and 7. Despite the lack of complete agreement between the

two KID curves obtained by propagation and generation calculation , the

shapes of these two curves are very close. Al though both K10 curves agree

well with experimental data during the first half of dynamic crack propa-

gation as shown in Figure 7, a distinct difference is noted by a second

local maximum, which occurs In both propagation and generation calculations

prior to crack arrest , but which does not occur in the experimental results.

The similarity between the propagation and generation KID curves is more

apparent in Figure 8 where the second maxima in the two calculations occur

at the same time. The higher K10 values in the generation calculation at

lower measured crack velocities during much of the crack propagation will re-

sult in a general shift of two K10 versus ~ relation in Figure 5.

I

_ _ _ _ _ _ _ _ _ _ _ _ _  
_ _  _ _ _ _ _ _  •



Figure 6 also shows that the computed crack jump distance is 4%

• shorter of the measured one in the propagation calculation but by defini-

tion is equal to measured distance in the generation calculation . Although

the propagation calculation is terminated when the computed dynamic stress

intensity factor falls below the minimum K10 value in Figure 5, the gener-

ation calculation is continued up to the prescribed crack tip length and

crac k arrest time. Signi f icantly lower dynamic stress intens ity at the

instant of crack arrest is noted.

The sensitivity of the dynamic stress intensity factor, which is cal-

culated by the generation method, to the instantaneous crack veloc i ty i s

further demonstrated in Figure 8. In order to assess the sensitivity of

K10 obtained by the generation method to the input data, a numerical experi-

ment was conducted by artificially perturbing the smooth experimental

curve 0f the crack tip motion in Figure 8. The result was a severely

perturbed K10 also shown in Figure 9, where discrete increases and de-

creases in crack velocities are followed by local minima and maxima of

• K ID respectively.

TDCB Spec imen

Figure 9 shows the KID as a function of a computed by the propagation

method , using the KID versus ~ relation of Figure 5 and by the generation

method using experimentally determined a versus t relations for the TDCB

specimen together wi th experimental data from Reference [25]. A second

max imum, wh ich resemb les that found previously in the RDCB spec imen, in

KID can be observed. The computed crack jump distance obtained by the

propagation method is shorter than the experimental one by 12%. In the

propagation calculation the computed K10 increased again to a value

approaching experimental KID after the Initial crack arrest. Subsequently

computed KID oscillated around the few experimental points.

H
_ _ _ _  • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Figure 10 shows the KID versus t relations obtained by both propagation
and generation calculat ions. Al though the two calculated KID are In

excellen t agreement with each other except for the initial phase of crack

propagation in this TDCB specimen, the calcula ted K10 are lower than the

measured KID just prior to and after crack arrest. Previous experience

with steel TDCB specimens (4,5,26] indicate that this small underestimate

could be attributed to the possth1~ separa tion of the loadi ng pi ns from

the loading wedge during crack propagation.

CONCLUSIONS

The results of the present and of the previous studies using HONDO II

show that the dynamic stress intensity factor for a crack propagating in

a finite two-dimensional body can be computed relatively inexpensively with

an accuracy suffic ient for many practical purposes. Very c lose agreements

between the KID obtained by the generation and by the propagation calcula-

tions should dispel the reservations [16,17] about this dynamic fracture

al gorithm.

When used in conjunction with measured crack position versus time

data , the generation method with proper care can be used to accurately

calculate the dynamic stress intensity factor during the fast crack propa-

gation and crack arrest.

On the other hand the uncertainty in the KID versus ~ relations ,

particularly in the region of very low velocities together with limi tation

In the finite element modeling of dynamic crack propagation offers little

chance for simulating the crack propagation and crack arrest event by the

propagation method when the dynamic stress intensity factor oscillates in

a narrow range about the crack arrest stress intensity factor as shown by some

experimental results with the single edged notch specimens reported in [25].

_ __  ~~~~• •• ~~~
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DISCUSSION

It has been a cotmion practice by all , including the authors , to

verify their fracture dynamic code by analyzing the Broberg problem [15]

for which the dynamic solution is available. Good agreements in these

studies cannot be construed as verification of numerical solutions gener-

ated for cracks propagating in finite specimens composed of real materials.

The discrepancies between the computed and the experimentally determined

KID_va lues shown in Figures 6 and 9 could have ari sen from the viscous

damping in Araldite B which was not modeled in the elasto-dynamic analyses

described in this paper. A study of the time-dependent energy balance

during crack propagation and arrest suggests that the consistently appear-

ing second maxima in the calculated KID-curves are real phenomena based on

elastic analyses. it is interesting to note that the limi ted experimental

K10 versus a relation obtained for RDCB specimens machined from high

strength steel [25] is in qualitative agreement with our elastic analysis

of the RDCB specimen .
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analyzed first by the (1~~~pagation method~
’
shere good agreements between cal-

culated and measured Kf~ versus a relation were observed. The calculated a -
versus time, t, relation)was then used as input data in the “~~nerat1on meThod°”~where the resul tant Kzry’were v i rtually identical to those obtained in the prop-
agation method. Error analyses of the generation method were also made first
by using the experimentally determined a versus t relation and secondly by
artifically ,perturbing this relation.

A TDCB specimen was then analyzed with both the propagation and generation
methods by using the Kf~~versus ,~ relation established for this specimen and themeasured a versus t relation, respectively. The computed KID obtained by both
methods were in good agreement with the experimental results, showing that either
approach can be used in analyzing fracture.
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